On the Power of Interactive Proofs for Learningstoc'24

Tom Gur ¹ Mohammad Mahdi Jahanara ² Mohammad Mahdi Khodabandeh ² Ninad Rajgopal ¹ Bahar Salamtian ³ Igor Shinkar ²

¹University of Cambridge

²Simon Fraser University

 3 Qualcomm

August 1, 2024

Make Goldreich-Levin Algorithm Interactive.

Make Goldreich-Levin Algorithm Interactive.

GL finds all high Fourier coefficients using poly(t, n) membership queries (t is the number of high Fourier coefficients)

Make Goldreich-Levin Algorithm Interactive.

- GL finds all high Fourier coefficients using poly(t, n) membership queries (t is the number of high Fourier coefficients)
- ▶ The interactive version was first discussed in [GRSY21]¹

¹Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive proofs for verifying machine learning.

Make Goldreich-Levin Algorithm Interactive.

- GL finds all high Fourier coefficients using poly(t, n) membership queries (t is the number of high Fourier coefficients)
- ▶ The interactive version was first discussed in [GRSY21]¹
- [GRSY21] use poly(t, n) random examples

¹Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive proofs for verifying machine learning.

Make Goldreich-Levin Algorithm Interactive.

- GL finds all high Fourier coefficients using poly(t, n) membership queries (t is the number of high Fourier coefficients)
- ▶ The interactive version was first discussed in [GRSY21]¹
- [GRSY21] use poly(t, n) random examples
- Our work: poly(t) random examples

¹Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive proofs for verifying machine learning.

The Standard Goldreich-Levin Algorithm

Goldreich-Levin Algorithm

Learning Fourier coefficients

Input Oracle access to a function $f : \{0,1\}^n \to \{0,1\}$, and $0 < \tau < 1$

Output Find all Fourier coefficients with $|\hat{f}| > \tau$.

Goldreich-Levin Algorithm

Learning Fourier coefficients

Input Oracle access to a function $f : \{0,1\}^n \to \{0,1\}$, and $0 < \tau < 1$ **Output** Find all Fourier coefficients with $|\hat{f}| > \tau$.

Solution overview

- Break the domain of Fourier coefficients ({0,1}ⁿ) to subcubes by fixing coordinates.
- 2 If a subcube has low Fourier weight, simply discard it. Otherwise keep splitting until we get singletons.

Goldreich-Levin Algorithm

Learning Fourier coefficients

Input Oracle access to a function $f : \{0,1\}^n \to \{0,1\}$, and $0 < \tau < 1$ **Output** Find all Fourier coefficients with $|\hat{f}| > \tau$.

Solution overview

- Break the domain of Fourier coefficients ({0,1}ⁿ) to subcubes by fixing coordinates.
- 2 If a subcube has low Fourier weight, simply discard it. Otherwise keep splitting until we get singletons.

Query Complexity

- We fix coordinates until we get singletons.
- We need to fix n coordinates.
- \implies Query complexity depends on *n*, and requires *membership* queries.

Goldreich-Levin Algorithm cont.

Subcube notation: $010 * * = \{2\}, \{2, 4\}, \{2, 5\}, \{2, 4, 5\}.$

Goldreich-Levin Algorithm cont.

Subcube notation: $010 * * = \{2\}, \{2, 4\}, \{2, 5\}, \{2, 4, 5\}.$

Weight of Subcube

$$\mathbf{W}(010**) = \hat{f}(\{2\})^2 + \hat{f}(\{2,4\})^2 + \hat{f}(\{2,5\})^2 + \hat{f}(\{2,4,5\})^2 \\ = \hat{f}(01000)^2 + \hat{f}(01010)^2 + \hat{f}(01001)^2 + \hat{f}(01011)^2.$$

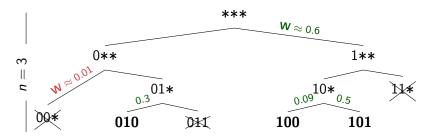
Goldreich-Levin Algorithm cont.

Subcube notation: $010 * * = \{2\}, \{2, 4\}, \{2, 5\}, \{2, 4, 5\}.$

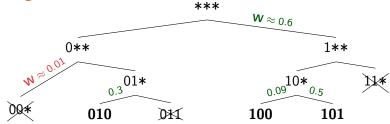
Weight of Subcube

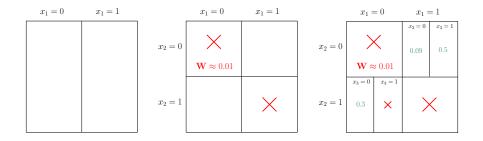
$$\mathbf{W}(010**) = \hat{f}(\{2\})^2 + \hat{f}(\{2,4\})^2 + \hat{f}(\{2,5\})^2 + \hat{f}(\{2,4,5\})^2 \\ = \hat{f}(01000)^2 + \hat{f}(01010)^2 + \hat{f}(01001)^2 + \hat{f}(01011)^2.$$

Input $f: \{0,1\}^3 \to \{0,1\}, \text{ and } \tau = 0.1$



Splitting into Subcubes





(SFU)

Interactive Proofs for Learning

August 1, 2024

イロト イポト イヨト イヨト

What if we have a Prover that claims to know the top *t* Fourier coefficients? Can we save on query complexity?

What if we have a Prover that claims to know the top *t* Fourier coefficients? Can we save on query complexity?

Main Theorem

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t, 1/\varepsilon)$ random examples, independent of n.

What if we have a Prover that claims to know the top *t* Fourier coefficients? Can we save on query complexity?

Main Theorem

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t, 1/\varepsilon)$ random examples, independent of n.

qualitatively efficient quantitatively efficient

What if we have a Prover that claims to know the top *t* Fourier coefficients? Can we save on query complexity?

Main Theorem

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t,1/\varepsilon)$ random examples, independent of n.

qualitatively efficient quantitatively efficient

Our output Λ = {γ₁,...,γ_t} is correct with error parameter ε if for all γ ∈ Λ and all β ∉ Λ, it holds that |f̂(γ)| + ε ≥ |f̂(β)|.

What if we have a Prover that claims to know the top *t* Fourier coefficients? Can we save on query complexity?

Main Theorem

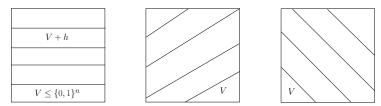
There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t,1/\varepsilon)$ random examples, independent of n.

qualitatively efficient quantitatively efficient

- Our output Λ = {γ₁,...,γ_t} is correct with error parameter ε if for all γ ∈ Λ and all β ∉ Λ, it holds that |f̂(γ)| + ε ≥ |f̂(β)|.
- This means if we want $\{\gamma : |\hat{f}(\gamma)| \ge \tau\}$, then we can set $t = 4/\tau^2$, $\varepsilon = \tau/2$. Thus poly $(1/\tau)$ random examples.

Splitting the Domain (in Affine Ways)

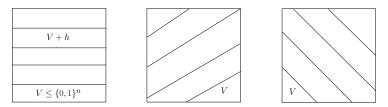
View $\{0,1\}^n$ as \mathbb{F}_2^n . Choose some subspace V. [GOSSW11]¹



¹Parikshit Gopalan, Ryan O'Donnell, Rocco A Servedio, Amir Shpilka, and Karl Wimmer. Testing fourier dimensionality and sparsity.

Interactive Proofs for Learning

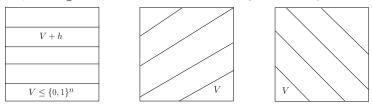
View $\{0,1\}^n$ as \mathbb{F}_2^n . Choose some subspace V. [GOSSW11]¹



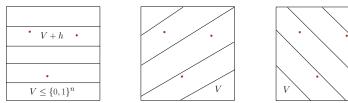
Say, we are interested in top 3 biggest Fourier coefficients.

¹Parikshit Gopalan, Ryan O'Donnell, Rocco A Servedio, Amir Shpilka, and Karl Wimmer. Testing fourier dimensionality and sparsity.

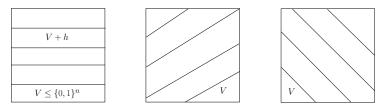
View $\{0,1\}^n$ as \mathbb{F}_2^n . Choose some subspace V. [GOSSW11]¹



Say, we are interested in top 3 biggest Fourier coefficients.



View $\{0,1\}^n$ as \mathbb{F}_2^n . Choose some subspace V. [GOSSW11]¹



Say, we are interested in top 3 biggest Fourier coefficients.

¹Parikshit Gopalan, Ryan O'Donnell, Rocco A Servedio, Amir Shpilka, and Karl Wimmer. Testing fourier dimensionality and sparsity.

iFU)	Interactive Proofs for Learning	August 1, 2024
------	---------------------------------	----------------

Linear functions

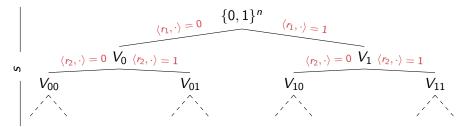
Let $r, \gamma \in \{0, 1\}^n$. Then $\langle r, \gamma \rangle = r_1 \gamma_1 + \cdots + r_n \gamma_n$. Think of r: random linear function; namely $\gamma \mapsto \langle r, \gamma \rangle$ Think of γ : Fourier character.

Linear functions

Let $r, \gamma \in \{0, 1\}^n$. Then $\langle r, \gamma \rangle = r_1 \gamma_1 + \cdots + r_n \gamma_n$. Think of r: random linear function; namely $\gamma \mapsto \langle r, \gamma \rangle$ Think of γ : Fourier character.

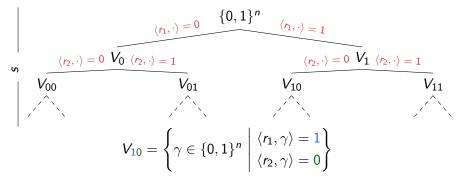
Linear functions

Let $r, \gamma \in \{0, 1\}^n$. Then $\langle r, \gamma \rangle = r_1 \gamma_1 + \cdots + r_n \gamma_n$. Think of r: random linear function; namely $\gamma \mapsto \langle r, \gamma \rangle$ Think of γ : Fourier character.



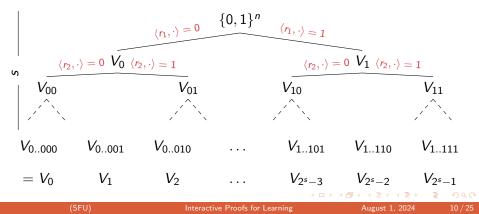
Linear functions

Let $r, \gamma \in \{0, 1\}^n$. Then $\langle r, \gamma \rangle = r_1 \gamma_1 + \cdots + r_n \gamma_n$. Think of r: random linear function; namely $\gamma \mapsto \langle r, \gamma \rangle$ Think of γ : Fourier character.



Linear functions

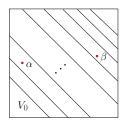
Let $r, \gamma \in \{0, 1\}^n$. Then $\langle r, \gamma \rangle = r_1 \gamma_1 + \cdots + r_n \gamma_n$. Think of r: random linear function; namely $\gamma \mapsto \langle r, \gamma \rangle$ Think of γ : Fourier character.



Parseval's identity $\sum_{\gamma} \hat{f}(\gamma)^2 = 1.$

Observation 1

Any two coefficients $\alpha \neq \beta \in \{0,1\}^n$ will be in different buckets with high probability.



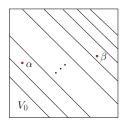
Parseval's identity $\sum_{\gamma} \hat{f}(\gamma)^2 = 1.$

Observation 1

Any two coefficients $\alpha \neq \beta \in \{0,1\}^n$ will be in different buckets with high probability.

Observation 2 - Union bound

We need **small** number of random linear functions r_1, \ldots, r_s to separate **all of**, say, top 3 Fourier coefficients.



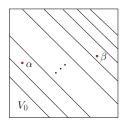
Parseval's identity $\sum_{\gamma} \hat{f}(\gamma)^2 = 1.$

Observation 1

Any two coefficients $\alpha \neq \beta \in \{0,1\}^n$ will be in different buckets with high probability.

Observation 2 - Union bound

We need **small** number of random linear functions r_1, \ldots, r_s to separate **all of**, say, top 3 Fourier coefficients.



Parseval's identity $\sum_{\gamma} \hat{f}(\gamma)^2 = 1.$

Observation 3

$$\sum_{\substack{\gamma \in V+h \\ w \sim V^{\perp}}} \hat{f}(\gamma)^4 = \mathbf{E}_{x,y,z \sim \{0,1\}^n} [\chi_h(w) \cdot f(x) \cdot f(y) \cdot f(z) \cdot f(x+y+z+w)];$$

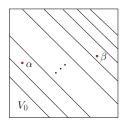
Image: A matrix and a matrix

Observation 1

Any two coefficients $\alpha \neq \beta \in \{0,1\}^n$ will be in different buckets with high probability.

Observation 2 - Union bound

We need **small** number of random linear functions r_1, \ldots, r_s to separate **all of**, say, top 3 Fourier coefficients.



Parseval's identity $\sum_{\gamma} \hat{f}(\gamma)^2 = 1.$

Observation 3

1
$$\sum_{\gamma \in V+h} \hat{f}(\gamma)^{4} = \mathbf{E}_{x,y,z \sim \{0,1\}^{n}}[\chi_{h}(w) \cdot f(x) \cdot f(y) \cdot f(z) \cdot f(x+y+z+w)];$$

$$w \sim V^{\perp}$$
2
$$\left(\sum_{\gamma \in V+h} \hat{f}(\gamma)^{4}\right)^{1/4} \text{ is close to the maximum coefficients in } V+h.$$

Algorithm for Computing Top t Coefficient Values

< 47 ►

Algorithm for Computing Top t Coefficient Values

Theorem

There is an algorithm such that given (membership) query access to a function $f : \{0,1\}^n \to \{0,1\}$, and parameters $t \in \mathbb{N}, \varepsilon > 0$, makes poly $(t,1/\varepsilon)$ queries to f and outputs t real numbers $c_1, \ldots, c_t \in \mathbb{R}^+$ that correspond to top t Fourier coefficient values of f.

Finding Largest t Coefficients

Task - Non-Interactive

Finding Largest t Coefficients

Task - Non-Interactive

Algorithm

Let $\Lambda_t = \{\gamma_1, \dots, \gamma_t\}$ be the correct set.

- Split the domain $\{0,1\}^n$ to affine subspaces V_0, \ldots, V_{2^s-1} . All γ_i 's belong to different cosets w.h.p.; Here $s \approx \log(t+1/\varepsilon)$.
- 2 Estimate the largest coefficient in each V_i
- \blacksquare Output the largest t

Finding Largest t Coefficients

Task - Non-Interactive

Algorithm

Let $\Lambda_t = \{\gamma_1, \dots, \gamma_t\}$ be the correct set.

- Split the domain $\{0,1\}^n$ to affine subspaces V_0, \ldots, V_{2^s-1} . All γ_i 's belong to different cosets w.h.p.; Here $s \approx \log(t+1/\varepsilon)$.
- 2 Estimate the largest coefficient in each V_i
- **3** Output the largest *t*
- The query complexity is $poly(t, 1/\varepsilon)$, independent of n;
- The characters γ_i's are still unknown!

IP for Finding Top t Fourier Coefficients

IP for Finding Top t Fourier Coefficients

Theorem

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t, 1/\varepsilon)$ membership queries, independent of n.

Task - Interactive

Task - Interactive

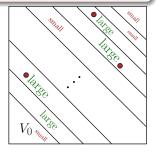
Interactive Protocol - poly $(t, 1/\varepsilon)$ samples

- P Sends a set $\Lambda'_t = \{\gamma'_1, \dots, \gamma'_t\}$ of large coefficients
- V Estimates the coefficients c'_1, \ldots, c'_t
- V Splits the domain into V_0, \ldots, V_{2^s-1} W.h.p. all of γ'_i and γ_i are separated;
- Reject if γ_i's cannot be matched with high-weight cosets.

Task - Interactive

Interactive Protocol - poly $(t, 1/\varepsilon)$ samples

- P Sends a set $\Lambda'_t = \{\gamma'_1, \dots, \gamma'_t\}$ of large coefficients
- **V** Estimates the coefficients c'_1, \ldots, c'_t
- V Splits the domain into V_0, \ldots, V_{2^s-1} W.h.p. all of γ'_i and γ_i are separated;
- V Reject if $\gamma'_i s$ cannot be matched with high-weight cosets.

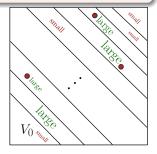


Honest Prover

Task - Interactive

Interactive Protocol - poly $(t, 1/\varepsilon)$ samples

- P Sends a set $\Lambda'_t = \{\gamma'_1, \dots, \gamma'_t\}$ of large coefficients
- **V** Estimates the coefficients c'_1, \ldots, c'_t
- V Splits the domain into V_0, \ldots, V_{2^s-1} W.h.p. all of γ'_i and γ_i are separated;
- V Reject if $\gamma'_i s$ cannot be matched with high-weight cosets.



Cheating Prover

IP for Finding Top t Fourier Coefficients

Theorem

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t, 1/\varepsilon)$ membership queries, independent of n.

Can we use random examples instead?

Our Result

Main Theorem - Random Examples

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t, 1/\varepsilon)$ random examples, independent of n.

Random Example

(x, f(x)) where $x \sim \{0, 1\}^n$.

Random Example

(x, f(x)) where $x \sim \{0, 1\}^n$.

General Framework of Query-to-Sample Reduction

Random Example (x, f(x)) where $x \sim \{0, 1\}^n$.

General Framework of Query-to-Sample Reduction

Idea: Prover will answer Verifier's membership queries.

Random Example (x, f(x)) where $x \sim \{0, 1\}^n$.

General Framework of Query-to-Sample Reduction

- Idea: Prover will answer Verifier's membership queries.
- ▶ P_M : IP with *q* membership queries $\rightarrow P_R$: IP with O(q) random examples

Random Example (x, f(x)) where $x \sim \{0, 1\}^n$.

General Framework of Query-to-Sample Reduction

- Idea: Prover will answer Verifier's membership queries.
- ▶ P_M : IP with *q* membership queries $\rightarrow P_R$: IP with O(q) random examples
- ▶ Requirement: P_M is MA-like

・ 何 ト ・ ヨ ト ・ ヨ ト …

Random Example

(x, f(x)) where $x \sim \{0, 1\}^n$.

General Framework of Query-to-Sample Reduction

- Idea: Prover will answer Verifier's membership queries.
- ▶ P_M : IP with *q* membership queries $\rightarrow P_R$: IP with O(q) random examples
- Requirement: P_M is MA-like

Recall

$$\sum_{\substack{\gamma \in V+h}} \hat{f}(\gamma)^4 = \mathop{\mathbf{E}}_{\substack{x,y,z \sim \{0,1\}^n \\ w \sim V^{\perp}}} [\chi_h(w) \cdot f(x) \cdot f(y) \cdot f(z) \cdot f(x+y+z+w)].$$

20 / 25

Random Example

(x, f(x)) where $x \sim \{0, 1\}^n$.

General Framework of Query-to-Sample Reduction

- Idea: Prover will answer Verifier's membership queries.
- ▶ P_M : IP with *q* membership queries $\rightarrow P_R$: IP with O(q) random examples
- Requirement: P_M is MA-like

$$\mathbf{E}_{\substack{x,y,z\sim\{0,1\}^n\\w\sim V^{\perp}}}[\chi_h(w)\cdot f(\underbrace{x}_{query})\cdot f(\underbrace{y}_{query})\cdot f(\underbrace{z}_{query})\cdot f(\underbrace{x+y+z+w}_{query})].$$

20 / 25

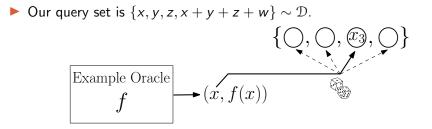
Random Example (x, f(x)) where $x \sim \{0, 1\}^n$.

General Framework of Query-to-Sample Reduction

- Idea: Prover will answer Verifier's membership queries.
- ▶ P_M : IP with *q* membership queries $\rightarrow P_R$: IP with O(q) random examples
- Requirement: P_M is MA-like

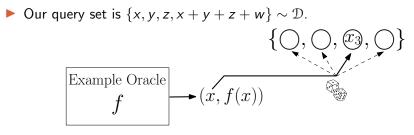
Observation $\underset{\substack{x,y,z\sim\{0,1\}^n\\w\sim V^{\perp}}}{\mathsf{E}} [\chi_h(w) \cdot f(\underbrace{x}_{uniform}) \cdot f(\underbrace{y}_{uniform}) \cdot f(\underbrace{z}_{uniform}) \cdot f(\underbrace{x+y+z+w}_{uniform})].$ э

• Our query set is $\{x, y, z, x + y + z + w\} \sim \mathcal{D}$.

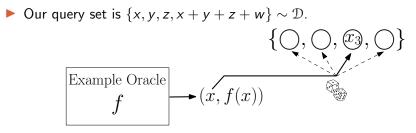


.∋...>

< 17 >



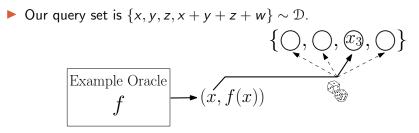
• We extend $\{\bigcirc, \bigcirc, x_3, \bigcirc\}$ to $\{x_1, x_2, x_3, x_4\} \sim \mathcal{D}$.



• We extend $\{\bigcirc, \bigcirc, x_3, \bigcirc\}$ to $\{x_1, x_2, x_3, x_4\} \sim \mathcal{D}$.

Note that the Verifier knows $f(x_3)$.

21 / 25

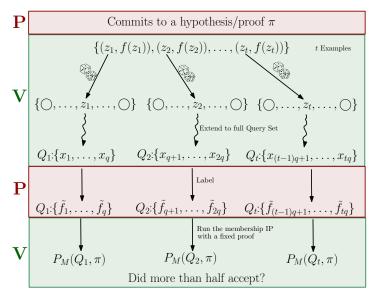


- ▶ We extend $\{\bigcirc, \bigcirc, x_3, \bigcirc\}$ to $\{x_1, x_2, x_3, x_4\} \sim \mathcal{D}$.
- Note that the Verifier knows $f(x_3)$.
- Now, if the Prover cheats in labeling this set, the Verifier catches him with probability 1/4.

Query-to-Sample Reduction: Details

- *P_M*: MA-like membership protocol;
- π : The proof (hypothesis) sent by the prover;
- ▶ *q*: Number of Verifier's queries.
- Let t = O(q), large enough

Query-to-Sample Reduction: Details



Main Theorem

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t, 1/\varepsilon)$ random examples, independent of n.

Main Theorem

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t, 1/\varepsilon)$ random examples, independent of n.

We have also other results

Main Theorem

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t, 1/\varepsilon)$ random examples, independent of n.

We have also other results

Learning k-juntas

Main Theorem

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t, 1/\varepsilon)$ random examples, independent of n.

We have also other results

- Learning k-juntas
- ▶ Learning AC⁰[⊕]

Main Theorem

There is an interactive protocol for finding top t Fourier coefficients of a function $f : \{0,1\}^n \to \{0,1\}$ with error parameter ε , where the Verifier uses $poly(t, 1/\varepsilon)$ random examples, independent of n.

We have also other results

- Learning k-juntas
- ▶ Learning AC⁰[⊕]
- Some results for arbitrary classes

Thank you for listening!

