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Our Plan

Make Goldreich-Levin Algorithm Interactive.

▶ GL finds all high Fourier coefficients using poly(t, n) membership
queries (t is the number of high Fourier coefficients)

▶ The interactive version was first discussed in [GRSY21]1

▶ [GRSY21] use poly(t, n) random examples

▶ Our work: poly(t) random examples

1Shafi Goldwasser, Guy N. Rothblum, Jonathan Shafer, and Amir Yehudayoff.
Interactive proofs for verifying machine learning.
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The Standard Goldreich-Levin Algorithm
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Goldreich-Levin Algorithm

Learning Fourier coefficients

Input Oracle access to a function f : {0, 1}n → {0, 1}, and 0 < τ < 1
Output Find all Fourier coefficients with |f̂ | > τ .

Solution overview

1 Break the domain of Fourier coefficients ({0, 1}n) to subcubes by
fixing coordinates.

2 If a subcube has low Fourier weight, simply discard it. Otherwise keep
splitting until we get singletons.

Query Complexity

▶ We fix coordinates until we get singletons.

▶ We need to fix n coordinates.

=⇒ Query complexity depends on n, and requires membership queries.
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Goldreich-Levin Algorithm cont.

Subcube notation: 010** = {2}, {2, 4}, {2, 5}, {2, 4, 5}.

Weight of Subcube

W(010**) = f̂ ( {2} )2 + f̂ ( {2, 4} )2 + f̂ ( {2, 5} )2 + f̂ ({2, 4, 5})2

= f̂ ( 01000 )2 + f̂ ( 01010 )2 + f̂ ( 01001 )2 + f̂ ( 01011 )2.

Input f : {0, 1}3 → {0, 1}, and τ = 0.1

n
=

3

***

0**

�
�Z
Z

00*

01*

010 ��HH011

1**

10*

100 101

�
�Z
Z

11*W
≈ 0.0

1

0.3

W ≈ 0.6

0.09 0.5
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Splitting into Subcubes
***

0**
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Interactive Goldreich-Levin

What if we have a Prover that claims to know the top t Fourier
coefficients? Can we save on query complexity?

Main Theorem

There is an interactive protocol for finding top t Fourier coefficients of a
function f : {0, 1}n → {0, 1} with , where the Verifier uses poly(t, 1/ε) .

▶ Our output Λ = {γ1, . . . , γt} is correct with error parameter ε if for
all γ ∈ Λ and all β /∈ Λ, it holds that |f̂ (γ)|+ ε ≥ |f̂ (β)|.

▶ This means if we want {γ : |f̂ (γ)| ≥ τ}, then we can set t = 4/τ2,
ε = τ/2. Thus poly(1/τ) random examples.
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Splitting the Domain (in Affine Ways)
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Splitting into Affine Subspaces
View {0, 1}n as Fn2. Choose some subspace V . [GOSSW11]1

V ≤ {0, 1}n

V + h

V V

Say, we are interested in top 3 biggest Fourier coefficients.

V ≤ {0, 1}n

V + h

V V

BAD GOOD GOOD

1Parikshit Gopalan, Ryan O’Donnell, Rocco A Servedio, Amir Shpilka, and Karl
Wimmer. Testing fourier dimensionality and sparsity.
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How the Splitting is Actually Done

Linear functions

Let r , γ ∈ {0, 1}n. Then ⟨r , γ⟩ = r1γ1 + · · ·+ rnγn.
Think of r : random linear function; namely γ 7→ ⟨r , γ⟩
Think of γ : Fourier character.

Take linearly ind. r1, r2, . . . , rs ∼ {0, 1}n; Think of s: small.

s

{0, 1}n

V0

V00 V01

V1

V10 V11

⟨r1, ·⟩ = 0

⟨r2, ·⟩ = 0 ⟨r2, ·⟩ = 1

⟨r1, ·⟩ = 1

⟨r2, ·⟩ = 0 ⟨r2, ·⟩ = 1

V0..000 V0..001 V0..010 . . . V1..101 V1..110 V1..111

= V0 V1 V2 . . . V2s−3 V2s−2 V2s−1
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Useful Observations About This Splitting

Observation 1

Any two coefficients α ̸= β ∈ {0, 1}n will be
in different buckets with high probability.

Observation 2 - Union bound

We need small number of random linear
functions r1, . . . , rs to separate all of, say,
top 3 Fourier coefficients.

V0

α
β

Parseval’s identity∑
γ f̂ (γ)

2 = 1.

Observation 3

1
∑

γ∈V+h f̂ (γ)
4 = Ex ,y ,z∼{0,1}n

w∼V⊥
[χh(w)·f (x)·f (y)·f (z)·f (x+y+z+w)];

2

(∑
γ∈V+h f̂ (γ)

4
)1/4

is close to the maximum coefficients in V + h.
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Algorithm for Computing Top t Coefficient Values
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Algorithm for Computing Top t Coefficient Values

Theorem

There is an algorithm such that given (membership) query access to a
function f : {0, 1}n → {0, 1}, and parameters t ∈ N, ε > 0, makes
poly(t, 1/ε) queries to f and outputs t real numbers c1, . . . , ct ∈ R+ that
correspond to top t Fourier coefficient values of f .
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Finding Largest t Coefficients

Task - Non-Interactive

Input Oracle f : {0, 1}n → {0, 1}, and t ∈ N, ε > 0
Output c1, . . . , ct ∈ R+ the absolute value of “largest” Fourier
coefficients of f

Algorithm

Let Λt = {γ1, . . . , γt} be the correct set.

1 Split the domain {0, 1}n to affine subspaces V0, . . . ,V2s−1.
All γi ’s belong to different cosets w.h.p.; Here s ≈ log(t + 1/ε).

2 Estimate the largest coefficient in each Vi

3 Output the largest t

▶ The query complexity is poly(t, 1/ε), independent of n;

▶ The characters γi ’s are still unknown!
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IP for Finding Top t Fourier Coefficients

Theorem

There is an interactive protocol for finding top t Fourier coefficients of a
function f : {0, 1}n → {0, 1} with error parameter ε, where the Verifier
uses poly(t, 1/ε) membership queries, independent of n.
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Use Prover to Find γi ’s

Task - Interactive

Input Oracle f : {0, 1}n → {0, 1}, and t ∈ N, ε > 0
Output γ1, . . . , γt ∈ {0, 1}n the characters corresponding to the
“largest” t Fourier coefficients of f

Interactive Protocol - poly(t, 1/ε) samples

P Sends a set Λ′
t = {γ′1, . . . , γ′t} of large

coefficients

V Estimates the coefficients c ′1, . . . , c
′
t

V Splits the domain into V0, . . . ,V2s−1

W.h.p. all of γ′i and γi are separated;

V Reject if γ′i s cannot be matched with
high-weight cosets.
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t
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IP for Finding Top t Fourier Coefficients

Theorem

There is an interactive protocol for finding top t Fourier coefficients of a
function f : {0, 1}n → {0, 1} with error parameter ε, where the Verifier
uses poly(t, 1/ε) membership queries, independent of n.

Can we use random examples instead?
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Our Result

Main Theorem - Random Examples

There is an interactive protocol for finding top t Fourier coefficients of a
function f : {0, 1}n → {0, 1} with error parameter ε, where the Verifier
uses poly(t, 1/ε) random examples, independent of n.
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Query-to-Sample Reduction

Random Example

(x , f (x)) where x ∼ {0, 1}n.

General Framework of Query-to-Sample Reduction

▶ Idea: Prover will answer Verifier’s membership queries.

▶ PM : IP with q membership queries → PR : IP with O(q) random
examples

▶ Requirement: PM is MA-like

Observation

E
x ,y ,z∼{0,1}n

w∼V⊥

[χh(w) · f ( x︸︷︷︸
uniform

) · f ( y︸︷︷︸
uniform

) · f ( z︸︷︷︸
uniform

) · f (x + y + z + w︸ ︷︷ ︸
uniform

)].
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Embedding a Random Example

▶ Our query set is {x , y , z , x + y + z + w} ∼ D.

Example Oracle

f (x, f (x))

{©,©,©,©}x3

▶ We extend {⃝,⃝, x3,⃝} to {x1, x2, x3, x4} ∼ D.

▶ Note that the Verifier knows f (x3).

▶ Now, if the Prover cheats in labeling this set, the Verifier catches him
with probability 1/4.
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Query-to-Sample Reduction: Details

▶ PM : MA-like membership protocol;

▶ π: The proof (hypothesis) sent by the prover;

▶ q: Number of Verifier’s queries.

▶ Let t = O(q), large enough
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Query-to-Sample Reduction: Details

{(z1, f (z1)), (z2, f (z2)), . . . , (zt, f (zt))} t Examples

{©, . . . , z1, . . . ,©} {©, . . . , z2, . . . ,©} {©, . . . , zt, . . . ,©}

Extend to full Query Set

Q1:{x1, . . . , xq} Q2:{xq+1, . . . , x2q} Qt:{x(t−1)q+1, . . . , xtq}

Q1:{f̃1, . . . , f̃q} Q2:{f̃q+1, . . . , f̃2q} Qt:{f̃(t−1)q+1, . . . , f̃tq}

PM(Q1, π) PM(Q2, π) PM(Qt, π)

Did more than half accept?

V

V

P
Label

Run the membership IP
with a fixed proof

P Commits to a hypothesis/proof π
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Interactive Proofs for Learning top Fourier Coefficients

Main Theorem

There is an interactive protocol for finding top t Fourier coefficients of a
function f : {0, 1}n → {0, 1} with error parameter ε, where the Verifier
uses poly(t, 1/ε) random examples, independent of n.

We have also other results

▶ Learning k-juntas

▶ Learning AC0[
⊕

]

▶ Some results for arbitrary classes
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Thank you for listening!
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